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ABSTRACT
This paper presents the modeling and study of dynamic be-

havior of a backhoe machine for tuning of PID controller. The
tuning procedure of PID controller is performed, in detailed, for
the case of a typical operation, digging a foundation and truck
loading. This tuning procedure guarantees the local asymptotic
stability in the sense of Lyapunov of origin of the closed-loop
equation of PID controller. Besides the tuning procedure requires
the knowledge of certain properties of dynamic model, which are
dependent on the desired trajectory. Finally it is demonstrated
that this tuning procedure proves to be effective, and also robust
in the execution of other tasks performed by the backhoe ma-
chine.

1 Introduction
In the field robotics, there is a well defined tendency for

development of technologies in the fields of motion planning,
perception, navigation and control that allow the complete au-
tonomy of machines. Such techniques are being improved and
applied in robots with dynamics, complex and non-parametrized
workspaces. In this sense, the motion planners require the de-
velopment of control systems that guarantee, in an efficient and
robust way, the autonomous execution of task in backhoe ma-
chines. Because it is vital for the security of operations in heavy
machineries.

On the other hand, the development of control systems
in backhoe machines presents important challenges due to the
non-linearities of dynamic model and the external forces prod-
uct of the interaction between the soil and tool. In [1] a ro-

bust impedance control for manipulator robots is developed, the
force is regulated by controlling the position and its relationship
(impedance) with the force. This kind of control, impedance con-
trol, was implemented for the automation of excavation tasks in
backhoe machines by [2]. In this regard, in this work is per-
formed a dynamic and kinematic analysis of the backhoe ma-
chine for PID controllers tuning. The tuning procedure used is
determined in [3] through the stability analysis in the sense of
Lyapunov of PID controller. Moreover, such procedure is based
on the knowledge of dynamic model of the machine, the tuning
procedure is detailed in this paper.

Finally, Section 2 describes the mathematical dynamic
model of backhoe arm, where it runs a set of tests to validate this
model. In Section 3 the implementation of backhoe arm control
system is shown. Besides, a detailed procedure of tuning for the
PID controllers is described which is based in asymptotic stabil-
ity method in the sense of Lyapunov. Finally, in Section 4 the
discussion of the obtained results and future works is presented.

2 Dynamic Model of Backhoe Arm
For the development of dynamic model of backhoe arm

a kinematic model of machine is required. In this sense, the
first step consists in selecting the references frames, using the
Denavit-Hartenberg (DH) convention [4], for the determination
of the DH parameters. In the Fig. 11 the assignment of the refer-
ences frames is shown, according to the DH convention, for the
construction of kinematic and dynamic model of backhoe arm.

1Note that mi, Ii and cmi represents the mass, mass moment of inertia and the
position of center of mass of link i, respectively.
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Figure 1: Assignment of the references frames of backhoe, according to Denavit-Hartenberg parameters.

The model developed in this paper assume that the hydraulic ac-
tuators act as infinitely powerful force sources, in the same way
that was presented in [5] [6].

Therefore, it develops a conservative dynamic model (1),
which does not consider non-conservative forces such as: vis-
cous and static friction forces, then it follows that:

M(q)q̈+C(q, q̇)q̇+g(q) = τ (1)

2.1 Validation of Backhoe arm Dynamic Model
In this paper, a set of test are using to validate the dynamic

model of backhoe arm. These test units are made through the
implementation of direct dynamic model of machine arm, i.e.

q̈ = M(q)−1(τ−C(q, q̇)q̇−g(q)) (2)

where the non-linear ordinary differential equation is solved in a
numerically form by using trapezoidal integration of (2).

The following provides 3 case studies designed to analyze
the dynamic response of backhoe arm according to a set of con-
ditions, initial position and input torque, parameterized. These
conditions are selected to compare the natural behavior of the
backhoe arm with the integration of dynamic model (2).

2.1.1 Case study 1 - Falling movement In this case
study, the backhoe arm is subject to small input torque2, τ =

2Compared with the gravitational torque in the initial position, i.e. τ0 =[
0 152.4 −2.4 −4.27

]T ·103 Nm.

[
0 114.3 −1.8 −3.2

]T ·103 Nm, that is not sufficient to maintain
the position of backhoe arm; besides the initial articular position
is q =

[
0 0 −10 0

]t degrees. Accordingly, in this condition a
falling movement of arm due to the gravitational torque is ex-
pected. Therefore, Fig. 2 depicts the backhoe-arm movement
with the conditions mentioned, where the green lines represents
the initial state of arm, and the red ones and red points represents
the state of links and joints, respectively.

In Fig. 2 the links movements sequence (red lines) exposes
a falling movement of backhoe arm. In this falling movement
is observed that the dynamic of the first link, the longest link, is
dominant because the gravitational torque in this joint is greater,
i.e. τ0 =

[
0 152.4 −2.4 −4.27

]T · 103 Nm. Besides it can be
seen, due to Coriolis forces, a chain movement between each
one of the links. Note also that the physical constraints of each
joint in the dynamic model implemented is not consider. Finally,
it is shown that the falling movement of backhoe arm occurs in
the xy plane, which is the expected movement.

2.1.2 Case study 2 - Falling movement with torque
in the turret This case study is similar to the previous one but
it adds significant input torque in the first or turret joint. Thus, it
is expected that the movement of backhoe arm be similar to Case
1 but with a rotation of turret. Besides the starting conditions are
the same as Case 1, i.e. q =

[
0 0 −10 0

]t , but with input torque
τ =

[
500 114.3 −1.8 −3.2

]T ·103 Nm. In this sense, in Fig. 3 is
observed the behavior of backhoe arm, i.e. it maintains the shape
of the falling movement but associating a rotational component
of movement in the direction of the turret input torque.
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Figure 2: Case study 1 - Falling movement sequence of backhoe
arm.
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Figure 3: Case study 2 - Falling movement sequence with torque
in the turret of backhoe arm.

2.1.3 Case study 3 - Falling movement with torque
in the boom In this case an input torque is supplied, sig-
nificant in the boom joint, which correspondences to τ =[
0 155.0 −1.8 −3.2

]T ·103 Nm that is greater than gravitational
torque in the initial position. Then, it is expected that boom link
move continuously upwards until the equilibrium point.

In Fig. 4 is appreciated the movement sequence for this case
study, where the boom link move up as it was expected. Besides,
it is shown that bucket link move downward when boom link
move upward. This results are coherent with the real behavior of
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Figure 4: Case study 3 - Falling movement sequence with torque
in the boom of backhoe arm.

backhoe arm.
Finally it is demonstrated, in each case study, the validity of

the analytical dynamic model developed for backhoe arm, that it
will be used for the tuning procedure of PID controllers.

3 Backhoe-arm Control System
For the purposes of motion planning, it is convenient to en-

code the backhoe tasks in the workspace of the machine. In [7] an
imitation learning approach is developed as motion planners, and
this motion planning algorithm encode the backhoe tasks in the
workspace of machine. Therefore, it is required the implementa-
tion of operational space control that allows the appropriate ex-
ecution of planned movement. In [8] a theoretical and empirical
comparison of operational space control for the complex case of
redundant manipulators is done. Such implementation is based
in the use of Proportional-Integral-Derivative (PID) controllers
in each rotational joint3 of the backhoe arm. In Fig. 5 can be
seen that the control system implemented has two main com-
ponents. The first component consists in the implementation of
the inverse kinematic algorithm [9] [10] that allows mapping the
generate movement, in the codification space of imitation learn-
ing approach

[
xe ye ze ψe

]T , to joint space. The second com-
ponent consists in the implementation of control system that is
based on PID controllers.

In Eq. (3) is described the digital control law that governs
the movement of backhoe arm. In this PID controller, the com-
putation of integral and derivative action depends of sample time
of error signal ∆t. The implementation of control system (see
Fig. 5) is based in a hard real-time mechanism4, where the com-

3The dynamic of hydraulic actuators have not been consider in this work.
4In contrast to soft real-time systems, hard real-time system must comply
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Figure 5: Backhoe-arm Control System.

pute loop is performed at 1000 Hz and the joint sensing at 100
Hz, i.e. it has ∆t = 1 mseg.

u(tk) = Kp

[
e(tk)+

1
Ti

k

∑
i=1

e(ti)∆t +Td

(
e(tk)− e(tk−1)

∆t

)]
(3)

where Kp is proportional gain, Ti is integral time parameter, Td is
derivative time parameter and ∆t is the sample time of the error
signal.

3.1 PID controller tuning

In Eq. (1) can be seen that backhoe-arm dynamic model is
non-linear, besides the PID control law (3) is a lineal strategy.
Therefore, it will require a convenient tuning of the PID con-
troller parameters (Kp, Ti and Td) that guarantee the asymptotic
stability of the origin, because the linear control action does not
cancel the non-linear components of backhoe-arm dynamic.

In [3] the asymptotic stability of PID controller is analyzed,
and it is shown that the stability of origin is in local way, i.e. for
boundary joint velocities ‖q̇‖, where depends of the selection of
PID controller gains.

‖q̇‖< 1
kC1

[
λmin{Kd}[λmin{Kp}− kg]

λmax{Ki}
−λmax{M}

]
(4)

and this result is achieved when the position q̃(0) and velocity
˙̃q(0) errors are sufficiently small [11].

In addition, according to the first method of Lyapunov sta-
bility is necessary to comply with the conditions (5) to guarantee

within established deadlines; otherwise a fault will occur.

the local asymptotic stability of the origin.

λmax{Ki} ≥ λmin{Ki} > 0
λmax{Kp} ≥ λmin{Kp} > kg (5)

λmax{Kd} ≥ λmin{Kd} >
λmax{Ki}

λmin{Kp}− kg

λ2
max{M}

λmin{M}

where

kg ≥ n
[

max
i, j,q

∣∣∣∣∂gi(q)
∂q j

∣∣∣∣] (6)

and

kC1 ≥ n2
[

max
i, j,k,q

∣∣Cki j(q)
∣∣] (7)

are intrinsic parameters of dynamic behavior of backhoe arm,
where n represents the number of degrees of freedom (dof).

As shown in (5), the tuning procedure requires the knowl-
edge of inertial matrix M(q) and gravitational vector g(q) of
backhoe arm, in order to determine λmin{M}, λmax{M} and kg,
respectively. Besides, it is noted that the attraction to equilibrium
will be increment when the inequalities (5) are fulfilled more
strongly5.

On the other hand, a tuning procedure of PID controller us-
ing a Lyapunov stability implies that there exist an invariant set
for the closed-loop dynamic, i.e

Ω = {q ∈ Rn, q̇ ∈ Rn : V (q, q̇)≤ α} ⊆ Q (8)

and hence for any initial state q0 ∈ Ω and q̇0 ∈ Ω, the system
fulfills the constraints and remains inside Ω, where q∈Q is con-
strained by the polytope Q .

5This attribute is known as semi-global attractiveness.



Figure 6: Joint positions of a typical movement of backhoe arm.

Movement for PID controller tuning A typical movement of
backhoe machine will be used for PID controller tuning. For pur-
pose of tuning, the selected movement represents a truck loading
operation, where this movement has three main phase; the first
one corresponds to a standby movement, the second ones corre-
sponds to a truck loading operation and the last one corresponds
to a return movement.

In Fig. 6 and 7 the corresponding joint movements for the
tuning procedure are shown. These figures shows clearly three
phase of movement, 0− 5 sec., 5− 20 sec. and 20− 35 sec.,
which corresponds to the aforementioned movement.

According to Fig. 7 the norm of joint velocity signal ‖q̇‖ is
determined. The maximum value of ‖q̇‖ is important to design
a controller with asymptotic stability in this locality. Besides in
Fig. 8 can be seen that the controller must be asymptotically
stable in the origin for velocities up to ‖q̇‖= 59.53 deg/s, where
this boundary velocity is good enough for any kind of operations.

Dynamic model parameters of backhoe arm As is seen in
Eq. (4) and (5), it is required to compute some parameters
that depends of movement of backhoe arm. Therefore, the pa-
rameters that must be calculated are kg, kC1, λmin{M(q)} and
λmax{M(q)}, where (6) and (7) are the equations to calculate kg
and kC1, respectively.

According to Eq. (6), the results of computing of maximum
component of partial derivative of gravitational vector with re-
spect to q maxi, j,q

∣∣∣ ∂gi(q)
∂q j

∣∣∣, for the movement described by Fig. 6
and 7, are shown in Fig. 9. Thus, the maximum point occurs in
t = 19.91 s with a value of 6017 kgm2/s2.

On the other hand, the computing of component
maxi, j,k,q

∣∣Cki j(q)
∣∣ of kC1 is shown in Fig. 10. Besides both val-

ues, the maximum absolute value of derivative of gravitational

Figure 7: Joint velocities of a typical movement of backhoe arm.

Figure 8: Norm of joint velocity for a typical movement of back-
hoe arm.

vector with respect to joint position q and Coriolis matrix, are
localed around t = 20 s; indeed the higher values occurs for the
movement phase of truck loading.

Moreover, a pseudo-proportional increase and decrease be-
tween

∣∣∣ ∂gi(q)
∂q j

∣∣∣ and
∣∣Cki j(q)

∣∣ is shown; characteristic that could be
mapping in any tasks performed by a backhoe machine. There-
fore, this pattern facilitates the determination of tuning criterion
of PID controllers, i.e. kg and kC1 are calculated based on maxi-
mum values found around t = 20 s.

Then it is assigned kg = 24068 kgm2/s2 and kc1 = 113779.2

kgm2 because n = 4 (number of d.o.f), and maxi, j,q

∣∣∣ ∂gi(q)
∂q j(q)

∣∣∣ =
6017 kgm2/s2 and maxi, j,k |Cki j(q)| = 7111.2 kgm2, respec-
tively.

In connection with this maximum and minimum values of



Figure 9: maxi, j,q

∣∣∣ ∂gi(q)
∂q j

∣∣∣ of a typical movement of backhoe arm.

Figure 10: maxi, j,k
∣∣Cki j(q)

∣∣ of a typical movement of backhoe
arm.

inertial matrix, in Fig. 11 the computation of these values for
movement concerned is shown. In the same way that Fig. 9 and
10, in Fig. 11 can be observed a pseudo-proportional pattern
between both signals, where their maximum values are in t = 20
sec, and with a local minimum λmin{M(q)} close in magnitude

to the global minimum. Note that relationship λ2
max{M(q)}

λmin{M(q)} is the
most important component for the tuning procedure because this
relationship defines the maximum value of conditions (5).

In Fig. 12 can be seen that global maximum occurs in
t = 8.37 sec, and not around t = 20 sec, while there is a local
maximum in t = 20 sec with value 1.6368 · 105 kg2 m4. How-
ever, it is decided to use an extreme values for PID tuning.

Tuning procedure The tuning procedure of gains Kp, Kd and
Ki is an iterative procedure based on conditions (4) and (5),
where such equations only restrict the space of possible gains.
Therefore, it was effectuated about 300 simulations in Gazebo

Figure 11: λmax{M(q)} and λmin{M(q)} of a typical movement
of backhoe arm.

[12] to determine an appropriate tuning6, which is based on con-
ditions (5)

Kp =


802500 0 0 0

0 782500 0 0
0 0 582500 0
0 0 0 372500

 [Nm/rad]

Kd =


1295000 0 0 0

0 845000 0 0
0 0 685000 0
0 0 0 365000

 [Nm/rad/s]

Ki =


54000 0 0 0

0 555000 0 0
0 0 455000 0
0 0 0 55000

 [Nm/rad s]

where the results of PID tuning for backhoe arm are shown in
Table 1.

In the selection of parameters is ensured the asymptotic sta-
bility of selected movement (see Fig. 6), i.e. the local asymptotic
stability is achieved for the boundary of ‖q̇‖ < 1149.97 deg/s
because it is satisfied that:

λmax{Ki} ≥ λmin{Ki}> 0 [Nm/rad s]

λmax{Kp} ≥ λmin{Kp}> 24068 [Nm/rad]

λmax{Kd} ≥ λmin{Kd}> 280007 [Nm/rad/s] (9)

6Note that PID values are higher because is not modeled the dynamic of hy-
draulic actuators..



Kp Kd Ki

q1 802500 129500 54000

q2 782500 845000 555000

q3 582500 685000 455000

q4 372500 365000 55500

Table 1: PID values for backhoe arm.

Figure 12: λ2
max{M(q)}

λmin{M(q)} of a typical movement of backhoe arm.

Moreover, this tuning has been tested for other movements
in simulation which has been planned through the implementa-
tion of the imitation learning approach [7]. The PID controller
tuning has been demonstrated successful results for any planned
operation in the backhoe machine.

In Fig. 13 the results of implementation and tuning of
PID controllers are presented. In this figure can be seen that
is achieved asymptotic stability in the origin for the response of
control system. In the sections of q3(t) does not occur appropri-
ate tracking because the physical constraint of stick link.

Besides, in Fig. 14 can observe, with detail, that the errors
are bounded between −2 < e(t) < 2 degrees with exception of
e3(t) and a section of e2(t). As mentioned above, this problem
is not associated with PID controller tuning, but rather physical
restrictions of backhoe arm.

Finally, in Fig. 15 the control signal of each one of the joints
is shown; where it can see that the higher control effort happens
in the stick link, i.e. in q2 because of the physical restrictions of
this joint. The higher control effort is associated with the higher
gravitational torque, which occurs in the stick link.

4 Conclusion
The cartesian control of automated backhoe machines is a

vary challenging problem, specially due to severe nonlinearities.

Figure 13: Response of PID control system for a typical move-
ment.

Figure 14: Error of PID control system for a typical movement.

The nonlinearities tend to increase with the size of the excavator,
and also, with the speed of end-effector.

In this sense, this paper develops and analyzes a PID con-
troller tuning procedure for the control systems of backhoe arm,
as a simple methodology for tuning a PID controller. The tun-
ing procedure is based in the desired movement of backhoe arm.
The selected movement represents a typical operation of back-
hoe machines, i.e. truck loading operation. Numeric simula-
tions demonstrate the effectiveness and security of the tuning
procedure for the execution of operations in backhoe machines,
which suggest the technical possibility of achieving autonomous



Figure 15: Control signal of PID control system for a typical
movement.

robotic excavation in moving toward construction automation.
In addition, it is demonstrated that relationship λ2

max{M(q)}
λmin{M(q)} is the

most influential component in the tuning procedure, because it
is a measure of kinematic energy of the machine. Besides, this
method guarantees robustness for q ∈ Q because it is demon-
strated that Lyapunov stability ensures an invariant set Ω.

Finally, futures works will address the analysis of stability in
the sense of Lyapunov for several external forces in the bucket,
and also the modeling of these interaction forces between the soil
and tool.
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