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Abstract— A common strategy to generate efficient locomo-
tion movements is to split the problem into two consecutive
steps: the first one generates the contact sequence together with
the centroidal trajectory, while the second step computes the
whole-body trajectory that follows the centroidal pattern. While
the second step is generally handled by a simple program such
as an inverse kinematics solver, we propose in this paper to
compute the whole-body trajectory by using a local optimal con-
trol solver, namely Differential Dynamic Programming (DDP).
Our method produces more efficient motions, with lower forces
and smaller impacts, by exploiting the Angular Momentum
(AM). With this aim, we propose an original DDP formulation
exploiting the Karush-Kuhn-Tucker constraint of the rigid
contact model. We experimentally show the importance of this
approach by executing large steps walking on the real HRP-2
robot, and by solving the problem of attitude control under the
absence of external contact forces.

I. INTRODUCTION

A. Goal of the paper

Trajectory optimization based on reduced centroidal dy-
namics [1] has gained a lot of attention in the legged robotics
community. Some approaches use it after precomputing the
contact sequence and placements [2], [3], [4], [5], [6], [7]
while other strategies optimize the centroidal trajectory and
contact information together [8], [9], [10]. In both cases, the
transfer from centroidal dynamics to whole-body dynamics
is achieved using instantaneous feedback linearization to
locally take into account the constraints of the robot. These
solvers usually solve quadratic optimization problems written
with task-space dynamics (Inverse Kinematics (IK) / Inverse
Dynamics (ID)) [11], [12], [13]. While this scheme has
shown great experimental results (e.g. [3], [5], [14]), it
is still not able to correctly handle the AM produced by
the extremities of the limbs. This is notable for humanoid
robots which have important masses in the limbs that are
put in motion during (for instance) walking. This effect is
neither properly captured by the centroidal model, nor by the
instantaneous time-invariant linearization.

In [12] an alternative scheme aims to compensate the AM
variations. Indeed, it properly compensates the momentum
changes produced by the flying limbs, however it is not yet
able to trigger additional momentum to enable very dynamic
movements. This would be needed for generating long steps,
running, jumping or salto motions. To properly handle the
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AM, it is necessary to jointly optimize the whole-body kine-
matics and the centroidal dynamics [2]. However whole-body
trajectory optimization approaches suffer from two problems
that prevent the replacement of IK/ID solvers. Namely, they
struggle to discover a valid motion, in particular the gait and
its timings; and they are slow to converge.

In this paper, we propose to combine the advantages of
centroidal dynamics optimization (to decide the gait, the
timings and the main shape of the centroidal trajectory)
with a whole-body trajectory optimizer based on multi-phase
rigid contact dynamics. In what follows, we first discuss the
importance of properly handling the AM during locomotion,
before introducing our method.

B. On the importance of angular momentum

Consider an astronaut, floating in space, without any exter-
nal forces. If he/she mimics the normal human walk, he/she
will start spinning in his/her sagittal plane. Indeed, contact
forces are not the only way to change the robot orientation. It
is known [15] that robot orientation can be controlled without
the need of contact forces (i.e. only with the internal joint
actuators). Under the action of only internal forces, the AM
conservation can be seen as a non-holonomic constraint on
the robot orientation. Of course, one can design a control law
that counterbalances the lower-body AM. However this will
create tracking errors (and potentially instabilities) without
mentioning the cases where the arms need to be used for
multi-contact locomotion. In fact, as shown in [16], a system
under non-holonomic constraints cannot be controlled with
a time-invariant feedback law. Thus AM requires a preview
control strategy to be correctly regulated or triggered.

It is often (wrongly) understood that centroidal optimiza-
tion provides the answer to this problem. The centroidal
optimizer can neither anticipate nor modify the limb move-
ments in order to change the AM as needed. For instance,
the centroidal optimizer cannot anticipate a high demand
of the linear part (Center of Mass (CoM)) by delaying
the limb movement, or exploit the movement of the arms
to compensate for large forces acting for a short duration.
Nonetheless, these methods are still valid since they provide
an efficient way to compute the CoM motion while keeping
balance and avoiding slippage.

C. Overview of our method

Instead of relying on instant linearization using IK/ID,
we propose to rely on optimal control [18] [19], namely
Differential Dynamic Programming (DDP), to compute the
whole-body motion while tracking the centroidal trajectory.
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Fig. 1: Overview of our multi-stage locomotion framework [17]. Given a requested path request between start and goal
positions (left image), P1 is the problem of computing a guide path in the space of equilibrium feasible root configurations.
P2 is then the problem of extending the path into a discrete sequence of contact configurations. Finally, P3 attends to
compute a dynamic-physical whole-body trajectory given as input the discrete contact sequence.

DDP has been made popular by the proof of concept [20],
and by the demonstration in simulation that it can meet the
control-loop timings constraint [21]. However, locomotion
movements computed by DDP have not yet been transferred
to a real full-size humanoid. Contrary to [20] that optimizes
the motion from scratch with a regularized dynamics (thanks
to a smooth contact model [22]), we propose to impose the
contact phases as decided by the centroidal optimization. As
DDP does not need to discover the contact switching instants,
we can use rigid contact dynamics which is faster to compute
and easier to implement.

Other works have shown that DDP is able to discover
locomotion gaits applied on a real quadruped [23]. In [24],
DDP is coupled with Monte Carlo tree search to compute
the bipedal locomotion pattern of an avatar. While not yet
demonstrated on a real humanoid, we might wonder whether
this should be pushed further, instead of relying on a decou-
pling between contact computation, centroidal and whole-
body optimization. We believe that DDP is a mature solution
to replace IK/ID and is very complementary to centroidal
optimization. Indeed, contact and centroidal problems can
be efficiently handled within a global search thanks to the
low dimension, while DDP is efficient to accurately handle
the whole-body dynamics in a large space (but locally).

The rest of the paper is organized as follows: after
discussing the locomotion framework in which our method
takes place, we describe and justify our technical choices in
Section II. Section III briefly introduces the DDP algorithm,
we then describe our novel DDP formulation for rigid contact
dynamics in Section IV. Then, in Section V we show
experimental trials and realistic simulation on the HRP-2
robot and compare them against a whole-body IK solver.
Lastly, Section VI summarizes the work conclusions.

II. MULTI-CONTACT MOTION GENERATION

Locomotion synthesis is a difficult problem because of
a) the combinatorial nature of contact planning, b) the
high-dimensionality of the search-space, c) the instabilities,
discontinuities and non-convexity of the robot dynamics, d)
the non-convexity of the terrain environment, among others.
In our previous works, we have proposed a multi-stage
strategy that decouples the global problem into successive
subproblems of smaller dimensions [17]. The global problem
is thus split into an interactive acyclic contact planner [25],

a centroidal pattern generator [4] [5] which takes the contact
sequence as an input, and a whole-body motion generator.

Centroidal pattern generator [4] [5] by itself is unable to
account for the AM effect generated by the limb motions.
Indeed, AM of a body is accounted by both, as a result of
the contact forces, and by only the limb movement. Consider
a floating-base robot. Even with no external forces acting on
the robot, a constant AM can be maintained by the non-
holonomic constraint on the joint velocities [15]:

nj∑
k=0

mi[rk − r]×ẋk +RkIkωk = Constant, (1)

where k denotes the index of a rigid limb and Ik corresponds
to its inertia matrix expressed in the body’s CoM frame. ẋk
and ωk are the linear and angular velocities of the links.

While we would like to account for this “gesticula-
tion” [15] during the centroidal optimization, it is a difficult
problem to solve in real-time. Instead, we assume that this
effect is small [4], but yet important to consider, and we
track it with a whole-body Model Predictive Control (MPC).
DDP [26] is a reasonable choice between the two, because
it allows us to generate additional AM using (1), while
efficiently tracking the reference trajectories provided by the
centroidal solver. DDP has been shown [27] to be efficient
in solving online Optimal Control (OC) in legged systems.
Fig. 1 demonstrates our multi-stage locomotion pipeline.

Generating a whole-body trajectory requires finding a tra-
jectory which is subject to dynamic-consistency, the friction-
cone constraints, the self-collision avoidance and the joint
limits. This can be formulated as a single OC problem:{

x∗0, · · · ,x∗N
u∗0, · · · ,u∗N

}
= argmin

X,U

N∑
k=1

∫ tk+∆t

tk

lk(x,u)dt

s.t. ẋ = f(x,u),

x ∈ X ,u ∈ U ,λ ∈ K.
(2)

The state and control are defined as x = (q,v) and u = τ ,
where q ∈ SE(3) × Rnj is the configuration vector for a
floating base robot with nj Degrees of Freedom (DoF). v
is its derivative, τ is the vector of joint torques, and λ is
the friction force corresponding to (x,u). X , U and K are
the admissible sets: joint configurations and joint velocities
bounds, joint torque commands limits, and contact forces
constraints (e.g. the friction cone constraint), respectively.



III. DIFFERENTIAL DYNAMIC PROGRAMMING

In this section, we give a formal description of the DDP
algorithm for completeness. For more elaborate explanations
and derivations, the reader is referred to [26]. DDP belongs
to the family of OC handled with a sparse structure thanks
to the Bellman principle. Concretely, instead of finding the
entire optimal trajectory (2), we make recursive decisions:

Vi(xi) = min
ui

[l(xi,ui) + Vi+1(f(xi,ui))], (3)

This is possible through a forward simulation of the system
dynamics xi+1 = f(xi,ui). Note that Vi denotes the value
function which describes the minimum cost-to-go:

Vi(xi) = min
ui:N−1

Ji(xi,ui:N−1). (4)

DDP searches locally the optimal state and control sequences
of the above problem. It uses a quadratic approximation
Q(δx, δu) of the differential change in (3), i.e.

Q(δx, δu) ≈

 1
δx
δu

>  0 Qx
> Qu

>

Qx Qxx Qxu

Qu Qux Quu

 1
δx
δu

 (5)

where

Qx = lx + f>x V′x,

Qu = lu + f>u V′x,

Qxx = lxx + f>x V′xxfx +V′xfxx,

Quu = luu + f>u V′xxfu +V′xfuu,

Qux = lux + f>u V′xxfx +V′xfux,

(6)

and the primes denotes the values at the next time-step.

A. Backward pass

The backward pass determines the search direction of the
Newton step by recursively solving (3). In an unconstrained
setting the solution is:

δu∗ = argmin
δu

Q(δx, δu) = k+Kδx, (7)

where k = −Q−1
uuQu and K = −Q−1

uuQux are the
feed-forward and feedback terms. Recursive updates of the
derivatives of the value function are done as follows:

Vx(i) = Qx +K>Quuk+K>Qu +Q>uxk,

Vxx(i) = Qxx +K>QuuK+K>Qux +Q>uxK.
(8)

B. Forward pass

The forward pass determines the step size along the
Newton direction by adjusting the line search parameter α.
It computes a new trajectory by integrating the dynamics
along the computed feed-forward and feedback commands
{ki,Ki}:

ûi = ui + αki +Ki(x̂i − xi),

x̂i+1 = f(x̂i, ûi),
(9)

in which x̂1 = x1, and {x̂i, ûi} are the new state-control
pair. Note that if α = 0, it does not change the state and
control trajectories.

C. Line search and regularization

We perform a backtracking line search by trying the
full step (α = 1) first. The choice of α is dual to the
choice of regularization terms, and both are updated between
subsequent iterations to ensure a good progress toward the
(local) optimal solution. We use two regularization schemes:
the Tikhonov regularization (over Quu) and its update using
the Levenberg-Marquardt algorithm are typically used [28].
Tassa et al. [27] propose a regularization scheme over Vxx,
which is equivalent to adding a penalty in the state changes.

IV. DDP WITH CONSTRAINED ROBOT DYNAMICS

A. Contact dynamics

Let’s consider the case of rigid contact dynamics with the
environment. Given a predefined contact sequence, rigid con-
tacts can be formulated as holonomic scleronomic constraints
to the robot dynamics (i.e. equality-constrained dynamics).
The unconstrained robot dynamics is typically represented
as:

Mv̇free = τ b, (10)

where M ∈ Rn×n is the joint-space inertia ma-
trix, v̇free is the unconstrained joint acceleration vector,
τ b = Sτ − b ∈ Rn is the force-bias vector that accounts for
the control τ , the Coriolis and gravitational effects b, and S
is the selection matrix of the actuated joint coordinates.

We can account for the rigid contact constraints by ap-
plying the Gauss principle of least constraint [29], [15].
Under this principle, the constrained motion evolves in such
a way that it minimizes the deviation in acceleration from
the unconstrained motion afree, i.e.:

v̇ = argmin
a

1

2
‖v̇ − v̇free‖M

subject to Jcv̇ + J̇cv = 0,

(11)

in which M is formally the metric tensor over the configu-
ration manifold q. Note that we differentiate twice the holo-
nomic contact constraint φ(q) in order to express it in the
acceleration space. In other words, the rigid contact condition
is expressed by the second-order kinematic constraints on the
contact surface position. Jc =

[
Jc1 · · · Jcf

]
∈ Rkp×n is

a stack of the f contact Jacobians.

B. Karush-Kuhn-Tucker (KKT) conditions

The Gauss minimization in (11) corresponds to an
equality-constrained convex optimization problem1, and it
has a unique solution if Jc is full-rank. The primal and
dual optimal solutions (v̇,λ) must satisfy the so-called KKT
conditions given by[

M J>c
Jc 0

] [
v̇
−λ

]
=

[
τ b
−J̇cv

]
. (12)

These dual variables λk ∈ Rp render themselves nicely
in mechanics as the external forces at the contact level. This
relationship allows us to express the contact forces directly

1M is a positive-definite matrix.



in terms of the robot state and actuation. As compared
to previous approaches which would introduce the contact
constraints in the whole-body optimization [3] [11], here we
solve for the contact constraints at the level of the dynamics,
and not the solver. In other words, this would free the solver
to find an unconstrained solution to the KKT dynamics
(12), without worrying about the contact constraint. Fast
iterative Newton and quasi-Newton methods can then be
easily applied to achieve real-time performance.

C. KKT-based DDP algorithm

From (12), we can see the augmented KKT dynamics as
a function of the state xi and the control ui:

xi+1 = f(xi,ui),

λi = g(xi,ui),
(13)

where the state x = (q,v) is represented by the configuration
vector and its tangent velocity, u is the torque-input vector,
and g(·) is the dual solution of (12). In case of legged robots,
the placement of the free-floating link is described using the
special Euclidean group SE(3).

Given a reference trajectory for the contact forces, the
DDP backward-pass cost and its respective Hessians (see
(3) and (6)) are updated as follows:

Ji(xi,Ui) = lf (xN ) +

N−1∑
k=i

l(xk,uk,λk), (14)

where Ui = {ui,ui+1, · · · ,uN−1} is the tuple of controls
that acts on the system dynamics at time i, and the Gauss-
Newton approximation of the Q coefficients (i.e. first-order
approximation of g(·) and f(·)) are

Qx = lx + g>x lλ + f>x V′x,

Qu = lu + g>u lλ + f>u V′x,

Qxx ≈ lxx + g>x lλλgx + f>x V′xxfx,

Quu ≈ luu + g>u lλλgu + f>u V′xxfu,

Qux ≈ lux + g>u lλλgx + f>u V′xxfx.

(15)

The set of equations (15) takes into account the trajectory of
the rigid contact forces inside the backward-pass. The system
evolution needed in the forward-pass is described by (13).

V. RESULTS

In this section, we show that our DDP formulation can
generate whole-body motions which require regulation of
the angular momentum. The performance of our algorithm is
assessed on realistic simulations and aggressive experimental
trials on the HRP-2 robot. First, we perform very large strides
(from 80 to 100 cm) which require large amount of angular
momentum (due to the fast swing of the 6-kg leg) and reach
the HRP-2 limits. This demonstrates the ability of the solver
to handle contact constraints, as well as to generate excessive
AM required by the leg motions. Then, to again emphasize
the need for a horizon based optimizer such as DDP, and
the ability of our solver to handle these AM requirements,
we regulate the robot attitude in absence of contact forces
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Fig. 5: Snapshots of 100 cm stride on a flat terrain used to evaluate the performance of our whole-body trajectory optimization
method. The DDP trajectory reduces significantly the normal forces peaks compared with classic whole-body IK.

Fig. 6: Attitude adjustment maneuver conducted by the robot in gravity free space. DDP solver takes into account the
non-holonomic angular momentum constraint and uses internal actuation to rotate 360◦ without the need for contact forces.

and gravitation field. These motions cannot be generated
through a standard time-invariant IK/ID solver, as the system
becomes non-holonomic as shown in (1).

All the motions were computed offline. Contact se-
quence [25] and the centroidal trajectory [30] are pre-
computed and provided to the solver for the large stride
experiments. We used the standard controller OpenHRP [31]
for tracking the motions on the real robot. The large strides
produced by DDP are compared with those produced by an
IK solver [11], showing the benefit of our approach.

A. Large stride on a flat ground

In these experiments, we generate a sequence of cyclic
contact for 80 cm to 100 cm stride. These are very big steps
for HRP-2 compared to its height (160 cm). For the contact
location, we use the OC solver reported in [3] to compute
the contact timings and the centroidal trajectory. As the
centroidal solver is able to provide feasible contact forces for
individual contacts in the phase, we use a damped cholesky
inverse to deal with the rank deficient Jc matrix. Then we
use our proposed DDP to generate the full robot motion.

The cost function is composed of various quadratic
residues (i.e. ‖ri(x,u,λ)‖2Qi

) in order to keep balance and
to increase efficiency and stability: (a) CoM, foot position
and orientation and contact forces tracking of centroidal
motion, (b) torque commands minimization and (c) joint
configuration and velocity regularization. The evolution of
the different normalized task costs with iterations is shown
in Fig. 2. Our method adapts the CoM to create a more
efficient torque and contact force trajectory.

Increasing the upper-body angular momentum helps to
counterbalance the swing leg motion, this in turn reduces
GRFs and improves the locomotion stability. Our experimen-
tal results show a reduction on the GRFs peaks compared to
the IK solver. Fig. 3 shows the measured normal contact
forces and the knee torques in case of DDP solver and IK
solvers. Our DDP reduced the normal forces peaks of the
IK solver from 895 N to 755 N. This represents a significant
improvement, considering that the minimum possible contact

forces are 650 N (the total mass of the HRP-2 robot is 65 kg)
and the maximum safe force allowed by the sensors on the
foot is 1000 N. An overview of the motion is shown in Fig. 5.

B. Attitude regulation through joint motion

The angular momentum equation (1) shows that it is
possible to regulate the robot attitude without the need of
contact forces [15]. It can be seen that the gravity field
does not affect this property. Thus, we analyze how our
DDP solver regulates the attitude in zero-gravity condition,
we named this task astronaut reorientation. The astronaut
reorientation (similar to cat falling) is an interesting motor
task due to fact that it depends on a proper exploitation of
the angular momentum based on the coordination of arms
and legs motions. Fig. 6 demonstrates the motion found by
the solver to rotate the body 360◦. Unlike an instantaneous
tracking solver like IK, the solver is willing to bend in the
opposite direction, in order to obtain an ability to create
sufficient angular momentum by the legs. It is important
here to note that such motion cannot be obtained by a time-
invariant control law which does not take the future control
trajectory into account.

The cost matrices for this problem require a barrier
function on the robot configuration to avoid self-collision.
Final cost on the body orientation provides the goal, and a
running cost on the posture is added for regularization. No
warm start is given to the solver, the initial control trajectory
is a set of zero vectors. For the ease of demonstration, we
used only the leg joints in the sagittal plane. Fig. 4 shows the
torques produced by the hip and the knee joints. Our method
creates a rotation of the upper body by a quick initial motion
in the legs. Then it maintains the angular velocity by small
correctional torque inputs during the rest of the trajectory.
At the end, to bring the rotation to a halt, the same behavior
is repeated in the reverse.

VI. CONCLUSION AND PERSPECTIVE

Typically, reduced centroidal trajectory optimization does
not take into account the AM produced by the limb motions.



Proper regulation of the AM exploits the counterbalancing
effect of limb motion in order to reduce the contact forces
and torque inputs. It also improves the stability during flight
phases where the momentum control can only be made
through joint motions. Excessive AM cannot be produced
by a simple IK/ID solver. OC provides the required tools
for solving it. Our proposed solver is an extension of our
previous work [3].

In this paper, we have proposed a novel DDP formulation
based on the augmented KKT dynamics (see (13)) which is
a product of holonomic contact constraints. It represents the
first application of motion generated by DDP solver on a real
humanoid locomotion. Our whole-body motion generation
pipeline enables us to potentially regulate angular momentum
dynamics during the whole-body motion in real-time. We
have observed a reduction of the contact forces compared
to the IK solver, even though we had to restrict the angular
momentum in the sagittal plane for the stride on flat ground
task due to robot limits. A more revealing experiment, the
astronaut reorientation, demonstrates further the limits of the
previous approaches and the advantages of using DDP. The
solver generates the desired motion from scratch in this case
by manipulating joint velocities within the non-holonomic
angular momentum constraints.

While the solver is able to generate AM, and track the
centroidal trajectories, the current approach still lacks an
assurance that the additional AM generated by the DDP
solver is accounted for in the centroidal optimization, and
vice versa. Upcoming work from our team is focused on this
guarantee. While this is proof-of-concept, an implementation
based on Analytical Derivatives [32] is also our next goal.
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