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Abstract— This paper describes a novel feature extraction
method for laser rangefinder data. Extracted features cor-
respond to real and virtual corners of the scanned scene.
The method is based on the Hough Transform (HT) for line
extraction, where the intersecting points of these lines are
considered as features. This work highlights the use of the
HT outside of image applications, and presents a new filtering
algorithm that reduces false positive in line detection by the HT
based method. The developed method was tested under various
simulated benchmarks in order to compare the performance as
a function of correctness, uncertainty, execution time and other
parameters. Also, a real data benchmark was included in the
tests. Finally, a simulation of EKF-SLAM was performed to
demonstrate the functionality of the developed method in more
complex tasks.

I. INTRODUCTION

Nowadays there are multiple areas of development in
robotics. However, there are common problems like map-
ping, navigation, path planning, localization, and so on that
have been solved in different ways. Many of these problems
have been solved by feature-based algorithms like EKF
(Extended Kalman Filter) for local localization and SLAM
(Simultaneous localization and Mapping) [1]. The feature-
based algorithms can’t handle large amounts of raw data.
That is why it is necessary to include a intermediary step
between the sensor data and the feature-based algorithms.
That step is called feature extraction (or landmarks extraction
or references extraction).

The extraction and processing of spatial features (land-
marks) from the data supplied by these sensors has become
a sub-topic of great importance for the navigation of mobile
robots. The extracted features must be stationary and re-
observables, in order to achieve the convergence of the
main algorithm (which could be a SLAM algorithm as
shown shortly). In this paper we consider only point-features
(also known as geometric references [2]) ie, those that are
determined by its two coordinates in the plane and are equals
regardless of the orientation.

Commonly, the most used sensors are cameras, ultra-
sounds and laser rangefinders. The latter one is used in the
course of this work.

The method developed in this work, is a corner detector.
A real corner occurs when the laser beam scans two different
surfaces that intersect with nonzero angle. The method also
detects virtual corners, these are obtained by prolonging a
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Fig. 1. Real and virtual corners.

surface (wall, door, etc.) linearly until it intersects another
one [3].

Fig. 1 shows a scan example. The black dots represent raw
laser measurements. Four lines are presents which produce
four intersection points. The circle-marked ones are real
corners and the others are virtual corners.

In 2010, Werneck et al. used a video taken by hand by an
operator moving in a straight line down a hallway [4]. They
used the Hough Transform to extract lines, which were then
used to construct a map of the hallway. That same year,
Santana et al. implemented EKF-SLAM using as references
pre-existing lines on the floor that were extracted using the
Hough Transform and monocular vision [5]. In [6] and [7],
the Hough Transform is used to process ultrasound data.

Y. Li and E. Olson introduced in 2010, using techniques
of image processing to extract references from laser data
[8]. They passed the laser data by a rasterization process to
convert it into an image.Then they used the Hough Trasform
and the Kanade-Tomasi corner detector [9].

As seen, the Hough Transform has been widely used in
image processing for robotics. However we propose to use
laser data directly without converting the planar view of
measurements in a 2D image.

In the next section will be explained the developed
method.

II. REFERENCE EXTRACTION

As illustrated in Fig. 2, the references extraction algorithm
based on Hough transform consisted of 5 blocks.

The first block applies the Hough transform to a full
scan of the laser rangefinder (ρρρk) obtaining as an output the
accumulator array (Acc). The next block is the peak detector,
which searches for local maximal in the accumulator array.
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Fig. 2. Block diagram of the developed feature extraction algorithm.

It sets a threshold, above which must be the peak values to
be detected.

The third block, compares each of the extracted lines with
the scan measurements. This in order to determine which
portion (line segment) of each line correspond to actual
data, and how many measurements are associated with each
segment, along with the error for each.The fourth block is
responsible for removing the segments (or lines) that were
detected but whose error or number of points does not make
them reliable to be taken as real segments.

Finally, the fifth block, is responsible for finding the
intersection points between all lines that survive the previous
block, since those points are the wanted features.

The following describes in detail each of the blocks of the
reference extraction algorithm.

A. Hough Transform And Peak Detector

The Hough Transform was initially introduced as a tech-
nique for extracting straight lines in images [10]. The straight
lines are parametrized by two values:

• θ: the angle of its normal.
• d: its algebraic distance from the origin.
These parameters are illustrated in the Fig. 3, being Eq. 1

the equation of the line in terms of them.

d = xp cos(θ) + yp sin(θ) (1)

The laser measurements in the x − y plane are trans-
formed to a d − θ plane. This plane is represented by a
two-dimensional array called accumulator (Acc). Each pair

Fig. 3. Line parameters. The slope-intercept form equation uses m (slope
of the line) and b (y-intercept of the line). Hough Transform uses the d− θ
parameters.

of coordinates (d, θ) in the accumulator corresponds to a
possible line in the x− y plane and each point in the x− y
plane corresponds to a sinusoidal curve in d− θ plane.

One dimension of the accumulator is the quantized angle
θ and the other dimension is the quantized distance d. The
resolution of the grid is determined by ∆d and ∆θ values.

The larger accumulator values indicate the parameters
(d, θ) of the lines in x−y plane. As the peak values decrease,
this may correspond to noisy spurious peaks instead of real
lines. For this reason is created a threshold (PeakTh) that
determines the minimum value that should take a peak to be
considered such. We fit the 15% of the maximum value of
Acc as the minimum value.

Additionally a minimum threshold (MinTh) was set, so
that if the 15% of the maximum value of the accumulator
does not exceed the minimum threshold is the latter that
is used to detect peaks. The equation 2 shown how is
determined the threshold.

PeakTh = max(MinTh, round(0.15×max(Acc))) (2)

Logically, accumulator values found in the neighborhood
of a detected peak also could exceed the threshold (PeakTh)
and be considered maximal peaks. To ensure that the detected
peaks are truly local maximal, whenever a peak is detected,
is created a neighborhood around of the peak, in which
is ignored the value of the accumulator to the following
detections (Neighborhood =

[
∆Vd ∆Vθ

]
).

The size of the neighborhood is given by a quantity ∆Vd

of cells in dimension d of the array and an amount ∆Vθ of
cells in dimension θ. Both quantities must be integers and
odd.

Additionally, it sets a parameter for limiting the number
of peaks (lines) which detects the algorithm (Nmax).

B. Segments Extractor

A line has no endpoints, this block extracts bounded
segments from the previous detected lines. Each segment
corresponds to a scan performed by the laser to a flat surface.
each line can have one or more associated segments.



Fig. 4. black dots are those associated with line lj . White dots are the
unassociated ones.

For each line (lj) extracted by the Hough Transform, the
algorithm calculates the perpendicular distance from said line
to each of the points corresponding to measurements of the
laser (d(Pi, lj)). Those points whose distance (d(Pi, lj)) is
lower than a certain threshold (MinDist) are considered
points associated with that line. The Fig. 4 shows a series of
points representing measurements of the laser. The black dots
correspond to those that are within the threshold (MinDist)
and are considered part of lj line.

Each portion of a line that is associated to laser measure-
ments is considered a segment. Each segment is determined
by its endpoint coordinates.

C. Segments Filter

Due to the noise of the measurements and the inherent
operation Hough transform, it often happens that for a real
segment, two or more lines are detected. These detected lines
have very little variations in the parameters d and θ. This
block has the function of eliminating or reducing these lines.

First are removed the segments whose number of associ-
ated points is below a minimum. Then are removed those
whose estimated error exceeds a threshold (MaxError).

Then the segments are revised (from different lines each)
seeking for those whose angle of intersection is too small to
consider they are distinct segments. In this case is deleted
the segment that has higher estimation error or the smallest
number of associated points.

Later we review all the lines extracted and are eliminated
those who don’t have any associated segment.

D. Intersection Points

From the previous block is received an array of the
parameters of the detected lines that were not removed by the
filter. Then we search for the intersection points of all lines
that are not parallel. These are the point-features extracted
by the developed method

It is possibly that some lines intersect at points very
far to the order of magnitude of the field of view of the
laser rangefinder. For example in the case of almost parallel
lines.In order to remove these points, we fit a limit distance
of 20m from the laser sensor to any detected point-feature.

III. IMPLEMENTATION
The algorithms described in section II were implemented

using MATLAB 2009b, running on a laptop with Core
i5@2.4 GHz and 4 GB of memory. Two different test
benches were used. The first one was made with simulated
data and the second with real data.
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Fig. 5. L-shaped hallway. It is divided in two zones. In Blue zone
predominate two parallel lines so there aren’t almost any intersection point.
In red zone there are several oblique lines so there are several intersection
points

A. Simulation

For the simulation, we use Webots 6. It allows the use of
an ODE physics engine that simulates the dynamic behavior
(force interaction, gravity, friction) real time, it can also
simulate a range finder laser with the statistical error asso-
ciated in the measurements while considering the conditions
of color of the object surfaces. A robotic platform of size,
shape and other properties similar to MobileRobotics Inc.’s
Amigobot was implemented, as well as a laser rangefinder
similar to the SICK-LMS200 model, with the following
features:

• σr = 0.005, Standard deviation of range measures
provided by the Laser rangefinder.

• ∆φ = 1◦, Angular resolution of the laser rangefinder.
• ROV = 10m, Range of view.
• AOV = 180◦, Angle of view.
In the simulation were obtained over 300 laser scans to test

the feature extraction method. Additionally, was simulated
an EKF-SLAM algorithm to probe the functionality of the
developed method in a more complicated navigation task

B. Real data

To test the algorithm with real data, we used a Hokuyo’s
laser rangefinder. The URG-04LX-UG01 model, with the
following features:

• σr = 0.005, Standard deviation of range measures
provided by the Laser range finder.

• ∆φ = 0.33◦, angular resolution of the laser range finder.
• ROV = 4m, Range of view.
• AOV = 240◦, Angle of view. (on practice was limited

to 180◦)
The laser was moved through a L-shaped hallway, which

is shown in Fig. 5.

C. Parameters

The most important parameters for the developed method
are those for the Hough Transform and the peak detector.



Fig. 6. A scene with detected features. Black points are raw measurements.
Gray lines are those that was filtered. Blue lines are those who passed
through the filter. Gray circles are all the real features, blue squares are
those ones that were detected. Red triangle is the laser rangefinder location.

Fig. 7. A scene with detected features. Black points are raw measurements.
Gray lines are those that was filtered. Blue lines are those who passed
through the filter. Gray circles are all the real features, blue squares are
those ones that were detected. Red triangle is the laser rangefinder location.

Therefore the analysis was based on variation in the res-
olution of the Hough Transform (∆d y ∆θ) and variation
in the neighborhood of peaks (∆Vd and ∆Vθ). The other
parameters were set experimentally in the following values:

• MinTh = 4.
• MaxN = 8.
• MinDist = 0.04m.
• MinPuntos = 4.
• MaxError = 0.02m.
• MinAng = 15o

IV. RESULTS

A. Simulated Testbench

In order to perform a graphical analysis several laser scans
were obtained with the simulation software. Below is an
analysis of a couple of them.

The Fig. 6 shows a single scan analyzed with different
parameters. The left one has the smallest neighborhood
(∆Vd = 1 and ∆Vθ = 1), and the right one the greater
(∆Vd = 11 and ∆Vθ = 21).

In all three cases, gray lines are eliminated by the filter
since they are “bad copies” of the actual line (right vertical).
In addition, the larger the neighborhood less false (gray) lines
appear. The more false lines extracts the Hough transform,
the least amount of actual lines are detected. So we have to
fine tuning the values for the peaks neighborhood.

The Fig. 7 shows another single scan.
To compare numerically the results were used parame-

ters similar to those proposed in [11] ,[3] adapted to the
extraction of point references as in [12]. The algorithms
were compared for the amount of extracted features, the
correctness and the execution time. The determination of the
parameters of comparison was made using a test bench of

more than 250 scans obtained by 2D simulation. Table I
shows the results obtained for each implementation.

TABLE I
RESULTS OF SIMULATED TESTBENCH

Neigh. Lines features correctness
Vθ Vd Time Detected Filtered Matched Extracted T.P. F.P.

[ms] [%] [%]

Resolution: ∆θ = 1o y ∆d = 1cm
1 1 151 2000 1090 496 1000 16,8 50,4
11 21 144 1871 969 915 1019 31,0 10,2
33 67 140 1721 1109 1147 1376 38,9 16,6
Resolution: ∆θ = 2o y ∆d = 2cm
1 1 80 2000 979 954 1116 32,3 14,5
11 21 80 1844 1209 1426 1481 48,3 3,7
33 67 78 1668 1237 1491 1565 50,5 4,7
Resolution: ∆θ = 3o y ∆d = 2cm
1 1 74 1995 1103 1134 1381 38,4 17,9
5 7 72 1753 1207 1498 1511 50,8 0,9
15 21 70 1582 1237 1566 1577 53,1 0,7
Resolution: ∆θ = 5o y ∆d = 2cm
1 1 67 1850 1298 1402 1760 47,5 20,3
3 7 65 1573 1232 1577 1577 53,5 0,0
11 21 64 1464 1244 1601 1601 54,3 0,0
Resolution: ∆θ = 5o y ∆d = 5cm
1 1 64 1907 1102 1328 1328 45,0 0,0
3 5 63 1905 1220 1480 1485 50,2 0,3
11 11 62 1797 1338 1646 1763 55,8 6,6
Resolution: ∆θ = 5o y ∆d = 10cm
1 1 62 2000 845 838 841 28,4 0,4
3 3 62 2000 948 904 955 30,6 5,3
11 7 62 1980 1190 1128 1542 38,2 26,9

Real lines: 1700 Real features: 2950

The execution time measurement was performed using
the functions tic() and toc() in Matlab. The time shown is
obtained by dividing the total execution time among the
number of scans stored in the test bench. The correctness
measures are defined as follows [11]:

TrueP =
NumMatches

NumTrueFea
% (3)

FalseP =
NumFeaExByAlgo−NumMatches

NumFeaExByAlgo
% (4)

where:
• NumTrueFea: is the number of real features.
• NumFeaExByAlgo: is the number of features ex-

tracted by an algorithm.
• NumMatches: is the number of matches to real fea-

tures
As seen in Table I, for greater neighborhood, the true

positives rate is greater and the false positives rate is less.
logically, the processing time is greater for better resolutions
and for poor resolutions, the results are deficient.

B. Real Testbench

In order to validate the feature extraction method devel-
oped. It was tested with more than 40 real scans. Results are
shown in Table II. In this case, we include a new measure: the
number of blind scans. These are scans where the method
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Fig. 8. The map of the environment appears in watermarks. Real path (black
dashed line). Odometry estimated path (black line). EKF-SLAM estimated
path (blue line). Extracted features (red ellipses).

was unable to find any feature. Better results are obtained
using the best resolution and the greater neighborhood.

There are a great quantity of blind scans. It is caused by
the large hallway where only parallels lines are detected (blue
zone in Fig. 5).

TABLE II
RESULTS OF REAL TESTBENCH

blind Features correctness
Parameters scans Real Matches Extracted T.P. F.P.

∆θ ∆d Vθ Vd [%] [%]
0,5 1 61 101 11 163 135 157 82,8 14,0
0,5 1 61 51 11 163 135 168 82,8 19,6
2 5 31 51 10 163 126 152 77,3 17,1
3 2 15 21 10 163 122 172 74,8 29,1
5 2 3 7 15 163 091 126 55,8 27,8
5 2 11 21 11 163 121 170 74,2 28,8

C. Simulated SLAM

A standard EKF-SLAM algorithm was implemented, sim-
ilar to those shown in [1][13]. The features used as observa-
tions to the EKF were extracted with the proposed method.
In Fig. 8 is shown the simulated environment. As observed,
the path estimated by pure odometry, diverge largely to the
real path. Instead, the EKF-SLAM estimated path converges
to the real path. Further in the Fig. 9 shows the evolution
over time of the estimated position error.

V. CONCLUSIONS AND FUTURE WORK

The method developed in this work proved to be fully
functional to be used as part of complex navigation algo-
rithms. Here was tested with EKF-SLAM but can be used
in any feature-based algorithm.

It has a good rate of true detections and it is robust to the
uncertainty of the sensor. However it has 2 disadvantages.
First, it has a high computational cost and second it is weak
in situations dominated by parallel lines (no intersection
points). The latter disadvantage is almost nonexistent when
using a large ROV laser rangefinder.
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In the future, we will implement SLAM in real environ-
ments and we will compare the performance of the method
based on Hough Transform with other feature extraction
methods
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